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4, Place Jussieu, F-75252 Paris Cedex 05
E-mail: lewerenz@spmol.jussieu.fr

The first part of this introductory lecture on Monte Carlo methods gives an overview of the
essential ideas of Monte Carlo, discusses the relation between the basic sampling concept and
statistical mechanics and the probabilistic interpretation of quantum mechanics, and provides a
classification of existing Monte Carlo methods. This part is followed by a summary of essential
concepts of probability and statistics, the construction of random walks, and the application of
random sampling in the estimation of integrals.

1 Introduction

The original title of this lecture was supposed to be “Classical Monte Carlo”, which is
somewhat surprising for a winter school about quantum simulations. Since this is the first
scientific lecture of this week I decided to interpret the title in a more general sense of
(i) providing a sort of classification of the existing Monte Carlo methods, (ii) discussing
certain algorithmic elements which were originally invented for classical Monte Carlo sim-
ulations but turn out to be useful also for quantum simulations, and last but not least (iii)
giving some guidelines of how to handle the stochastic nature of the results. Many of these
subjects will be revisited by other speakers in specialized lectures during this week.

The speakers in this workshop come from chemistry, physics, mathematics, and com-
puter science and this is probably true about the audience as well. This fact illustrates the
generality of both Monte Carlo and Molecular Dynamics methods and reflects the algorith-
mic challenges implicit in the simulation of ever larger systems on computers of increasing
complexity. The requirements on the stability of trajectories over long simulation times or
on the quality of random numbers are continuously increasing.

The section on elementary aspects of random variables and random walks is important
because quantum chemists in the broad sense, ranging from electronic structure to reaction
dynamics, are mostly not used to error bars in their data. Of course this does not imply the
absence of errors in these deterministic calculations, but at least for certain computational
techniques we know that we should observe monotonic convergence to a well defined result
if a computational parameter (basis set size, grid resolution etc.) is changed. The presence
of statistical noise in the result of a computation requires a different spirit in the assessment
of the reliability of a calculation and a redefinition of the idea of convergence. The finite
error margin on the result from any kind of Monte Carlo calculation can also make it hard
to detect subtle errors in a code or deficiencies in the quality of the underlying source of
randomness1, 2.

In production mode a proper Monte Carlo code will give a different result each time it
is run. For test purposes, however, perfect reproducibility has to be possible as an option.
A typical Monte Carlo code is far less complex than an electronic structure code but this
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apparent simplicity should not lead to an underestimate of the possible troubles. We want
to use random numbers to produce results, but we do not want these results to be random!

1.1 What is Monte Carlo ?

The keyword “Monte Carlo” in the name of a method only indicates that there is some
stochastic element in it3–8. Stochastic methods are clearly appropriate for the description
of stochastic processes but we will see that it can be useful to replace a deterministic
problem by an equivalent stochastic problem. We will restrict ourselves here to stochastic
methods of physical or chemical relevance.

The central idea of Monte Carlo methods is to represent the solution of a mathematical
(or in our case physical) problem by a parameter of a true or hypothetical distribution and to
estimate the value of this parameter by sampling from this distribution. This idea provides
a direct tie to the ensemble concept introduced into statistical mechanics by Gibbs and the
probabilistic interpretation of wave functions in quantum mechanics. Since we know how
to translate a thermodynamic problem into its corresponding ensemble we have, at least
in principle, a direct prescription for the computation of an observable, namely to con-
struct a sufficiently large number of microstates compatible with the specified macroscopic
variables and to average their properties. The distribution function for the microstates in
generally known for this type of problem.

Once we know the wave function of a physical system we can imagine to compute ex-
pectation values by drawing samples from the associated probability density. This quantum
Monte Carlo approach is very interesting because it provides a very practical interpreta-
tion of the abstract concept of a wave function. Unfortunately exact wave functions are
known for only a very limited number of systems. However, as you will learn during
this workshop, there are several Monte Carlo methods which achieve the difficult goal of
simultaneously creating and sampling from the a priori unknown quantum distribution.

Monte Carlo methods play a very important role in statistical physics9–14 and have led
to a very high technical standard of algorithms and methods to quantify systematic and
statistical errors. While classical Monte Carlo has a well established place in chemistry
in particular in the (numerical) theory of liquids15, 16, the group of methods customarily
referred to as quantum Monte Carlo is used by only a relatively small, but rapidly in-
creasing number of people. Unfortunately the transfer of methodological knowledge be-
tween statistical physics, electronic structure applications of quantum Monte Carlo, and
the rapidly growing group of people interested in dynamical applications is still relatively
poor. Specifically in my own field of the application of quantum Monte Carlo techniques
to vibrational problems a number of far from optimal algorithms are in widespread use.
Hopefully this workshop can contribute to change this situation.

1.2 Monte Carlo vs Molecular Dynamics

Monte Carlo methods, which are usually based on random walks and thus sequences of
events, contain an apparent dynamics. It is, however, crucial to recognize that the se-
quence of events does not correspond to a sequence in real time, as opposed to the role
of time as an explicit variable in molecular dynamics methods. The sequence of events is
generally independent of the physical phenomena which we wish to describe by a Monte
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Carlo method and depends on the chosen algorithm. The creation of smart sequences is in
fact an important design goal in the construction of efficient Monte Carlo algorithms.

The absence of time in Monte Carlo algorithms implies the fundamental inability to
describe non equilibrium processes. We will, however, encounter the concept of imaginary
time, which should rather be regarded as inverse energy, in several quantum Monte Carlo
methods in the lectures of my colleagues J. Anderson and D. Ceperley.

Why then do we need Monte Carlo methods if the most common ensembles of statis-
tical mechanics (microcanonical and canonical) are equally well accessible by molecular
dynamics methods which give access to time dependent and time independent properties?
Besides being easily able to describe situations, which are difficult (e.g. grand canonical
ensemble) or impossible (e.g. discrete models, see F. Assaad, S. Sorella) to cast into equa-
tions of motion, well designed Monte Carlo methods offer more chances of overcoming
one of the most severe problems of simulation methods, namely exhaustive sampling of the
relevant configuration space. The local configuration updates imposed by the small time
steps in the discretized version of the equations of motion (systematic discretisation error!)
allow only slow exploration of configuration space by dynamical methods through a se-
quence of very many small steps. Our only chance for improvement is a faster computer
and maybe a better code design.

Monte Carlo methods do not have the equivalent of a time step error (the target dis-
tribution is sampled exactly with only statistical errors) and they allow a great degree of
freedom in the design of the sequence of steps, potentially including smart global config-
uration updates which permit rapid exploration of problems which may suffer from sig-
nificant ergodicity problems in an equivalent dynamical simulation. Monte Carlo methods
allow to replace computer power by creative brain power. There are also relatively straight-
forward applications of Monte Carlo methods to quantum systems, as you will see in the
other lectures of this winter school.

The essential conclusion is that molecular dynamics and Monte Carlo methods do not
compete but complement each other.

1.3 Classical vs Quantum Monte Carlo

The existing Monte Carlo methods can be divided into methods which assume that classical
mechanics is applicable and that consequently energy is a continuous variable and those
which are based on the idea of discrete quantum energy levels. While all of the latter
methods are sometimes referred to as quantum Monte Carlo methods, I personally prefer
to distinguish methods which assume a known set of energy levels (usually from a model
hamiltonian) from those in which the Monte Carlo method is actually used to find these
energy levels.

This difference becomes evident if we look at the other physically important distinc-
tion, namely the role of temperature. In the classical limit the investigation of the system
at T=0 corresponds to finding the global minimum on a multidimensional potential sur-
face, which is conceptually simple (but in practice can be formidable problem). At finite
temperature, Monte Carlo methods are used to sample points in configuration space ac-
cording to a known probability distribution for the available energies (e.g. the Boltzmann
distribution). Averages over these points are used to estimate the expectation value of any
property of interest which is formally defined as an integral in statistical mechanics. Here
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Classical Quantum

T = 0 Locating the mini-
mum of a multidi-
mensional surface,
e.g. Simulated
annealing

Single occupied
quantum state of
known energy

Single quantum
state(s) with
unknown properties:
variational Monte
Carlo (VMC),
diffusion Monte
Carlo (DMC)

T > 0 Classical Monte
Carlo (CMC) in
various ensembles
(Integration over
continuous states)

Summation over
discrete states (lattice
model Hamiltonians,
Ising etc.),
technically similar to
CMC

Direct averaging
over many quantum
states:
path integral Monte
Carlo (PIMC)

known energy levels Ei unknown energy
levels Ei

we have a typical example for the replacement of a deterministic problem (performing a
high dimensional integral) by an equivalent stochastic problem.

The same basic techniques can be applied to model quantum systems, where the T=0
situation now corresponds to finding the combination of discrete variables (quantum num-
bers, spin orientations etc.) which give the lowest energy. This is again a conceptually
simple problem, even though in practice the huge size of the available (now discrete) con-
figuration space can still be very troublesome. The computation of thermodynamic aver-
ages at T > 0 for this type of system does not require any profound modifications of the
algorithms of classical Monte Carlo. Instead of performing a random walk in continuous
coordinates one attempts to flip discrete spins or to change quantum numbers (sometimes
with very elaborate algorithms17, 18) before evaluating the quantum energy of the system
from a simple formula, which then in turn determines the continuation of the random walk.
The Monte Carlo method is used here only to perform the average over available states,
but not to actually compute the quantum states or their properties.

The situation becomes much more complicated if we do not even know the states which
are available in a given quantum system. Searching for the properties of individual pure
quantum states, independent of their occupation, eliminates temperature as a variable,
which can formally be set to zero. The simplest of these states, and of course the only
one occupied at T=0, is the quantum ground state. The goal of methods like variational
Monte Carlo (VMC), Green’s function Monte Carlo (GFMC)19–21, and its most common
variant diffusion Monte Carlo (DMC)22–24 is the calculation of wave functions, energies,
and other properties of pure states. Whereas the VMC method relies on exploring a pro-
posed quantum distribution and its subsequent optimisation, the distribution from which

4



the samples should be taken is a priori unknown in GFMC and DMC and is constructed in
the course of the Monte Carlo calculation.

Once a sufficiently complete set of eigenstates has been computed by one of these
methods, thermodynamic averages at T>0 could in principle be computed by direct sum-
mation or application of sampling techniques as above. Unfortunately even the computa-
tion of a few states is still not easy, as we will see in this workshop.

However, if we are willing to sacrifice detailed knowledge of individual quantum states,
direct sampling of the density matrix is possible by the numerical implementation of the
path integral approach to quantum mechanics25, 26, which again replaces integrals by aver-
ages over samples and is known as path integral Monte Carlo (PIMC). This latter method
can be mapped onto a classical problem27 with specific modifications to account for quan-
tum statistics28.

This last group of methods merits the designation “quantum Monte Carlo” in the more
precise sense of attempts to use Monte Carlo techniques to solve the actual quantum prob-
lem. You will hear more about the theory underlying these methods and their implemen-
tation and application to actual problems in other lectures of this course. Most of the ef-
forts of advancing quantum Monte Carlo technology in molecular physics (VMC, GFMC,
DMC) are oriented towards electronic structure29, 24, 30–33 but the methods are equally ap-
plicable to rovibrational problems. While the fermion statistics of electrons causes partic-
ular trouble in the construction of stable algorithms for electronic structure problems, the
rovibrational ground state of most molecular systems can be computed exactly with these
methods.

1.4 Why do we need Quantum Monte Carlo ?

Quantum Monte Carlo methods are not here to replace other methods in electronic or
vibrational structure, but are an interesting complement to these more conventional meth-
ods. The GFMC approach, and DMC as its most common implementation, in principle
only needs a potential energy surface. While basis set methods have problems to provide
enough flexibility to span large configuration spaces and usually require basis sets specially
tailored to a given problem in order to remain technically feasible, DMC is an intrisically
global method.

Due to its general applicability its value is probably even higher in vibrational prob-
lems where the different shapes of interaction potentials require a lot of care in basis func-
tion design as opposed to electronic structure, where the potential is always just a sum of
Coulomb terms and where there is a well developed general technology based on Gaus-
sian basis functions. The construction of the random walks allows the treatment of large
amplitude motion and of wave functions which are spread over a large number of potential
minima. Of course we have to pay a price for this: DMC will only give a single wave
function and not a whole spectrum, and even this single wave function has an unusual
representation and the extraction of unbiased expectation values is rather complicated.

Being an exact method except for statistical errors, one can easily follow the evolution
of the quantum properties of systems of increasing complexity (e.g. cluster size effects)
without biasing the results through the introduction of more and more approximations or
more stringent basis limitations. This attractive scaling of the accuracy is accompanied
by a relatively modest growth of the computational effort. The only serious, and often
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underestimated, problem is the practical achievement of the full exploration of the relevant
configuration space, in other words the ergodicity of a random walk of finite length.

Presenting this topic to an audience of young researchers is probably a good occasion
to give a brief list of open problems which might be interesting to look into. On the NCSA
web site http://archive.ncsa.uiuc.edu/Apps/CMP/topten/topten.html you can find the fol-
lowing list of reasons why quantum Monte Carlo methods are still not very popular in
electronic structure theory.
Top reasons why quantum Monte Carlo is not generally used in chemistry:

• We need forces, dummy!

• Try getting O2 to bind at the variational level.

• How many graduate students lives have been lost optimizing wavefunctions?

• It is hard to get 0.01 eV accuracy by throwing dice.

• Most chemical problems have more than 50 electrons.

• Who thought LDA or HF pseudopotentials would be any good?

• How many spectra have you seen computed by QMC?

• QMC is only exact for energies.

• Multiple determinants. We can’t live with them, we can’t live without them.

• After all, electrons are fermions.

• Electrons move.

• QMC isn’t included in Gaussian 90. Who programs anyway?

From my own experience with rovibrational problems I might add:

• How to construct trial wave functions for arbitrary potentials?

• We want a lot of excited states.

• We want rigid body constraints.

• How to handle almost degenerate states?

2 Review of Probability and Statistics

This section introduces several basic notions which we will need to describe the data pro-
duced by a Monte Carlo calculation and to specify individual components in the construc-
tion of random walks. The presentation follows essentially the discussion given in Ref. 4.
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2.1 Probabilities and Random Variables

We consider a reservoir of possible outcomes {E} for a random event.

{E} = {E1, E2, E3 . . . En} (1)

We associate a probability pk with each Ek:

P (Ek) = pk 1 ≥ pk ≥ 0 (2)

Properties of pk:

1. The following relations hold for any pair of Ei, Ej .

P (Ei ∧ Ej) ≤ pi + pj (3)

P (Ei ∨ Ej) ≤ pi + pj (4)

2. If Ei and Ej are mutually exclusive
(Ei ⇒ ¬Ej , Ej ⇒ ¬Ei):

P (Ei ∧ Ej) = 0 (5)

P (Ei ∨ Ej) = pi + pj (6)

3. For a class of mutually exclusive events, which contains all possible events we have:

P (some E) = 1 =
∑

i

pi (7)

2.2 Joint and Marginal Probabilities

Suppose that the events Ei and Fj satisfy the conditions defined above with associated
probabilities p1i and p2j ,

P (Ei) = p1i P (Fj) = p2j , (8)

and we are interested in the probability of the combined event (Ei, Fj). We define the
probability of this event as the joint probability

P (Ei, Fj) = pij (9)

The events Ei and Fj are called independent if the probability of the combined event can
be expressed as

pij = p1ip2j . (10)

If the events Ei and Fj are not independent, i. e. pij 6= p1ip2j , it is useful to decompose
the joint probability as follows:

pij =

(
∑

k

pik

)[
pij

∑

k pik

]

(11)

pij = p(i)

[
pij

∑

k pik

]

(12)
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The quantity p(i) is called the marginal probability for the event Ei, the probability of
observing Ei combined with any event in the reservoir {F}. Clearly p(i) = p1i and
∑

i p(i) =
∑

i

∑

k pik = 1.

The second factor pij/
∑

k pik = p(j|i) defines the conditional probability of observ-
ing Fj , provided Ei has occurred. Since we are certain to observe one of the possible Fj

in combination with Ei we clearly have

∑

j

p(j|i) =
∑

j

pij
∑

k pik
=

∑

j pij
∑

k pik
= 1 (13)

The concept of conditional probability is an important element in the construction of ran-
dom walks, because certain events will be possible only if they are preceeded by particular
other events.

2.3 Random Variables and Expectation Values

The random events discussed above E, F can be anything of numerical or non numerical
character (e.g. a noise amplitude or a logical decision). If we can associate a numerical
value xi with each random event Ei, we call x a random variable.

We define the expectation value E(x) of a random variable x as

E(x) = 〈x〉 =
∑

i

pixi (14)

Assume that g is a function of x, g(xi) = gi. Then also gi will be a random variable
and we define

E(g(x)) = 〈g(x)〉 =
∑

i

pig(xi) (15)

Suppose that g(xi) = g(x) = const:

E(g(x)) =
∑

i

pig(xi) = g(xi)
∑

i

pi = g(x) (16)

We conclude that the expectation value of a constant is a constant.
In the next step we prove the linearity of the expectation value of two random func-

tions g1(x) and g2(x) by substitution of the definition of an expectation value in terms of
probabilities:

E(λ1g1(x) + λ2g2(x)) = 〈λ1g1(x) + λ2g2(x)〉
=
∑

i

pi (λ1g1(xi) + λ2g2(xi))

= λ1

∑

i

pig1(xi) + λ2

∑

i

pig2(xi)

= λ1〈g1(x)〉 + λ2〈g2(x)〉
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2.4 Moments of a Distribution

We define the nth moment of a distribution as

µn = 〈xn〉 =
∑

i

pix
n
i (17)

These powers of x are nothing but special cases of the random functions g(x).
Principal moments:

µ1 =
∑

i

pixi mean of the distribution

µ2 =
∑

i

pix
2
i

Central moments:

〈mn(x)〉 = 〈(x − µ1)
n〉

=
∑

i

pi(xi − 〈x〉)n

The special case of n = 2 is called the variance:

V ar{x} = 〈m2(x)〉 = 〈x2〉 − 〈x〉2 (18)

The variance is particularly important because V ar{x} and µ1 are sufficient to
uniquely specify the important Gaussian distribution which usually results from the su-
perposition of a sufficiently large number of random events from arbitrary underlying dis-
tributions.

2.5 Variance of a Random Function

By extension of the definition of the variance of a random variable we can define the
variance of a random function g(x):

V ar{g(x)} = 〈(g(x) − 〈g(x)〉)2

=
∑

i

pig
2(x) − 2〈g(x)〉

∑

i

pig(xi)

+ 〈g(x)〉2
∑

i

pi

= 〈g2(x)〉 − 〈g(x)〉2

2.6 Variance of a Linear Combination of Random Functions

By insertion of the definition and linearity of expectation values we can find the result for
a linear combination of random functions:
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V ar{λ1g1(x) + λ2g2(x)} =

= 〈(λ1g1(x) + λ2g2(x) − 〈λ1g1(x) + λ2g2(x)〉)2〉
= 〈(λ1g1(x) + λ2g2(x) − λ1〈g1(x)〉 − λ2〈g2(x)〉)2〉
= 〈(λ1[g1(x) − 〈g1(x)〉] + λ2[g2(x) − 〈g2(x)〉])2〉
= 〈(λ2

1[g1(x) − 〈g1(x)〉]2 + λ2
2[g2(x) − 〈g2(x)〉]2

+ 2λ1λ2[g1(x) − 〈g1〉][g2(x) − 〈g2〉]〉
= λ2

1〈[g1(x) − 〈g1(x)〉]2〉 + λ2
2〈[g2(x) − 〈g2(x)〉]2〉

+ 2λ1λ2〈[g1(x)g2(x) − g1(x)〈g2(x)〉
− 〈g1(x)〉g2(x) + 〈g1(x)〉〈g2(x)〉〉 (19)

In short this result can be expressed through the variances of the random functions g1 and
g2 and an extra term:

V ar{λ1g1(x) + λ2g2(x)} = λ2
1V ar{g1(x)}

+ λ2
2V ar{g2(x)}

+ 2λ1λ2(〈g1(x)g2(x)〉
− 〈g1(x)〉〈g2(x)〉)

2.7 The Covariance

The mixed term in the preceeding equation is called the covariance of g1(x) and g2(x).

Cov{g1(x), g2(x)} = 〈g1(x)g2(x)〉 − 〈g1(x)〉〈g2(x)〉 (20)

This term can be positive or negative and we will show in the next section that this term is
related to the mutual dependence between the two random functions g1 and g2.

We have the following special cases for simple random variables x and y:

Cov{x, y} = 〈xy〉 − 〈x〉〈y〉
Cov{x, x} = 〈xx〉 − 〈x〉〈x〉 = V ar{x}

Depending on the sign of the covariance, the variance of a linear combination of ran-
dom functions or variables can be larger or smaller than the sum of the individual variances.

V ar{g1 + g2} = V ar{g1} + V ar{g2} + Cov{g1, g2} (21)

The possibility of negative covariance can be exploited in special sampling techniques
(correlated sampling, antithetic variates) to achieve variance reduction.

V ar{g1 + g2} < V ar{g1} + V ar{g2} (22)
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2.8 Properties of the Covariance

Cov{x, y} = 〈xy〉 − 〈x〉〈y〉
〈xy〉 =

∑

ij

pijxiyj (23)

If the random variables x and y are independent, the pij can be decomposed according
to

pij = p1ip2j (24)

〈xy〉 =
∑

ij

p1ixip2jyj

=

(
∑

i

p1ixi

)


∑

j

p2jyj





= 〈x〉〈y〉
⇒ Cov{x, y} = 0 (25)

Independence of two random variables x, y is clearly a sufficient but not a necessary
condition for Cov{x, y} to be zero!

2.9 Correlation and Autocorrelation

The correlation coefficient r(x, y) is the normalized version of the covariance:

r(x, y) =
Cov{x, y}

√

V ar{x}V ar{y}
(26)

−1 ≤ r(x, y) ≤ 1 (27)

If one considers the values of y as copies of x with a constant offset δ (in time or some
pseudotime establishing an order)

yj = xi = xj−δ (28)

one can compute a correlation coefficient for each offset δ.

r(x, y; δ) = A(x; δ) (29)

This function A(x; δ) is called the autocorrelation function and varies between -1 and +1
as a result of the normalisation by the variances of x and y.

The computation of the autocorrelation function is an important tool to assess the sta-
tistical independence of events within a sequence of random events. If A(x; δ) 6= 0 we
can be sure that there is some serial correlation between events separated by an offset δ.
Conversely A(x; δ) = 0 can occur if either the covariance is systematically zero due to
statistical independence of the events or accidentally zero in spite of serial correlation.

All random walk methods require careful autocorrelation analysis.
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2.10 Continuous Distributions
In the preceeding section we have assumed discrete random events to simplify the presen-
tation, but generally random variables can also be continuous.

For a one-dimensional case we have

−∞ ≤ x ≤ ∞ (30)

We can define a cumulative distribution function F (x) as

F (x) = P{randomly selected y < x} (31)

Assume that x2 > x1. Then the events x2 > y ≥ x1 and x1 > y are mutually exclusive
and we conclude:

P{x2 > y ≥ x1} + P{x1 > y} = P{x2 > y}
P{x2 > y} ≥ P{x1 > y}

It follows that F (x) is a monotonically increasing function.

F (−∞) = 0 , F (∞) = 1 (32)

The function F (x) is not necessarily smooth. In differentiable regions one can define the
probability density function ρ(x):

ρ(x) =
dF (x)

dx
≥ 0 (33)

2.11 Moments of Continuous Distributions
The concept of moments can be generalised to continuous distributions by the replacement
of summations by integrations and of probabilities pi by dF (x).

E(x) = 〈x〉 =

∫
∞

−∞

xdF (x)

(

=

∫
∞

−∞

xρ(x)dx

)

(34)

∫
∞

−∞

ρ(x)dx = F (∞) = 1 (35)

E(g(x)) = 〈g(x)〉 =

∫
∞

−∞

g(x)dF (x) (36)

The variance is now given as

V ar{x} = E(x2) − E(x)2

=

∫
∞

−∞

x2ρ(x)dx −
[∫

∞

−∞

xρ(x)dx

]2

It is important to note that the variance is not a well defined quantity for all proba-
bility densities ρ(x). An well known example is the Cauchy-Lorentz-distribution with an
arbitrary width parameter a

ρ(x) =
1

π

a

x2 + a2
(37)

for which E(x) = 0 and E(x2) = ∞.
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2.12 Sums of Random Variables

• Suppose we have random variables x1, x2, . . . , xn which are distributed according to
some probability density function ρ(x). The variable xi may represent a multidimen-
sional point.

• We evaluate functions gi(xi) for each xi where the functions gi may or may not be
identical. The gi(xi) are then random variables.

• We define a weighted sum G over these functions and its expectation value E(G):

G =
n∑

i

λigi(xi) λi ∈
�

(38)

E(G) = 〈G〉 =

n∑

i

λi〈gi(xi)〉 (39)

• A special choice is to use λi = 1/n for all weights and to consider all gi to be identical

E(G) = E

(

1

n

n∑

i

g(xi)

)

=
1

n

n∑

i

E(g) = E(g) (40)

We find that the expectation value E(G) for the sum G is identical with the expectation
value E(g) for the function. Consequently G can serve as an estimator for E(g). This is in
fact the basis of all Monte Carlo methods: Expectation values, which generally correspond
to integrals, are approximated by a sum (here G) over values of the integrand (here g(x))
sampled at a finite set of points xi, i = 1 . . . n. We now have to establish a measure of the
rate of convergence of the estimator G to the true expectation value if we increase n.

2.13 Variance of the Sum of Random Variables

• Assume for simplicity that all xi are independent. In this case the covariance is zero
for all combinations of random variables and the variance of G can be expressed
simply as the sum of the variances of its terms:

V ar{G} =

n∑

i

λ2
i V ar{gi(x)} (41)

• Again assume identical weights and functions λi = 1/n, gi(x) = g(x)

V ar{G} =
n∑

i

1

n2
V ar{g(x)}
︸ ︷︷ ︸

some number

=
1

n
V ar{g(x)} (42)

The variance of the estimator G decreases in proportion to 1/n with a generally unknown
proportionality factor. The determination of this factor would involve the computation
of an integral over g, which is of the same complexity as the direct computation of the
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expectation value E(g) by integration. If we could compute this integral we would not
resort to sampling and summation in the first place!

Statistical convergence:
The deviation of G from E(g) will not decrease monotonically towards zero with in-

creasing n as a result of the random nature of each new term entering the sum. The concept
of convergence has to be accordingly redefined: The deviation δ of the estimator from the

true value will exceed a specified limit ∆ with a probability which diminishes as n → ∞.
The non monotonic convergence of results is probably the single most irritating feature

of Monte Carlo methods for newcomers, in particular for those who are used to other
quantum mechanical methods using basis set expansions or grids.

3 Sources of Randomness

Monte Carlo methods require the creation of random events according to specified proba-
bility densities. There are three classes of sources:

• Natural sources of (true ?) randomness.
Historically interesting but inefficient, not reproducible, and of hardly quantifiable
quality.

• Deterministic algorithms producing a sequence of numbers with properties which are
indistinguishable from a true random sequence as measured by a battery of statistical
tests.

• Random walks constructed from primitive random events for all complicated multi-
dimensional distributions.

We will look in detail only at random walk methods and assume the availability of a
good uniform random number generator.

3.1 Random Number Generators

We will not attempt an exhaustive discussion of this subject, which is an active subject of
research in number theory and cryptography. There is a very rich literature on the subject,
including modern developments in the context of parallel computers and the problem of
generating independent subsequences on many processors34, 35. Many useful methods for
the generation of random numbers with a variety of distributions are discussed in Refs. 3,
5, 8, 36. Artefacts and diagnostic tests for the quality of random numbers are discussed in
Refs. 1, 37–39. A detailed discussion of random number generators is the subject of other
special lectures in this series.

The key features of contemporary random number generators can be summarized as
follows:
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• No true random sequence due to the underlying deterministic algorithm, therefore
more precisely called pseudo random number generators, PRNG.

• Construction on the basis of number theory and by extensive statistical testing.

• Usually generation of a sequence of numbers 0 < u ≤ 1 with uniform distribution,
F (u) = u.

• Several common types: linear congruential generators (LCG), lagged Fibonacci gen-
erators (LFG), combined generators.

• Other distributions by transformation algorithms.

• High speed and quality, perfect reproducibility of the sequence for test purposes.

• Deterministic algorithm implies some subtle sequential correlation.

• There is no publicly known PRNG without at least one reported case of failure.

• In case of doubt, try a generator of different type and verify statistical consistency.

• New challenges posed by the arrival of parallel computers (Creation of uncorrelated
parallel sequences).

3.2 Random Walks

The random walk method has been introduced into statistical physics in the hallmark paper
of Metropolis et al.40 and is enormously flexible for the creation of random events with
any conceivable distribution.

The method allows to generate samples from specified probability density functions
ρ(x), in particular if the space x has a high dimensionality. In fact we need not even be
able to compute the absolute value of ρ(x) for a given x, which implies a normalisation
which in itself involves a multidimensional integration. It is generally sufficient to com-
pute ratios between values of ρ(x) at points xi and xj . Random walks are a sequence of
events x1, x2, x3, . . . , constructed such that the probability P{xnew} of finding xnew is
some function of f(xnew , xlast) of the previous events. The function f(xnew , xlast) de-
scribes a strategy to propagate the walk and corresponds in fact to a conditional probability
p(xnew|xlast). This is the key difference to direct sampling methods where P{xnew} is
independent of the previous event xlast. The process has a memory and implies serial
correlation.

Random walks are a special example for a Markov process.
The general conditions for random walks which are supposed to generate samples with

distribution ρ(x) can be summarized as follows

1. Every point x where ρ(x) 6= 0 must be accessible.

2. It must be possible to revisit the same point x any number of times.

3. The walk must not periodically pass through the same points x again.
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These conditions are equivalent to requiring ergodicity of the random walk.
We should bear in mind that even if the fundamental construction principle of a random

walk may ensure ergodicity, there is no guarantee that a random walk of finite length has
explored all relevant parts of configuration space for a given physical problem. Insufficient
length of random walks is the probably most common source of incorrect Monte Carlo
results.

3.3 The Stochastic Matrix

Consider for a moment a system with discrete ’states’ (position, orientations, quantum
numbers etc.) x1, x2, . . . xn.

p(xj |xi) is the conditional probability to observe xj provided that we had xi just before
and is the transition probability for a Markov process. The ensemble of all p(xj |xi) for all
combinations of xi and xj can be arranged in matrix form, where we use the short notation
pij = p(xj |xi) for the transition from xi to xj .

P
=

=









p11 p12 p13 . . . p1n

p21 p22

...
...

...
pn1 . . . . . . . . . pnn









(43)

The matrix P is a stochastic matrix

All pij ≥ 0 because they represent probabilities and
∑

j pij = 1 for all i because each
transition from i must lead to one of the available ’states’.

3.4 Properties of the Stochastic Matrix

Consider a row vector

ρ(0) = {ρ(0)
1 , ρ

(0)
2 , . . . , ρ(0)

n } (44)

which describes an initial state in which ρ
(0)
i is the probability of initially finding the system

in state i.
Each step in the Markov chain can be formulated as a multiplication of this row vector

with the stochastic matrix P :

ρ(1) = ρ(0)P
=

ρ(2) = ρ(1)P
=

. . . . . .

ρ(k) = ρ(0)P
=

k

The asymptotic distribution ρ for k → ∞ is

ρ = lim
k→∞

ρ(0)P
=

k (45)
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Repeated multiplication of ρ(0) with P converges to a stationary situation if

ρ = ρP
=

(46)

which implies that ρ is an eigenvector of P with eigenvalue 1. Here we already see that ρ
can be multiplied by any scalar without changing the result. The asymptotic distribution is
independent of the initial ’state’ ρ(0) and depends exclusively on the matrix P . All initial
vectors (except for other eigenvectors of P

=
) converge to the same asymptotic distribution.

Matrices generally have a spectrum of eigenvalues. It is relatively easy to show that
repeated multiplication of a vector with a matrix will project out the vector belonging to the
eigenvalue with the largest modulus. To complete the proof of the validity of the random
walk construction we have to prove that 1 is the largest possible eigenvalue of a stochastic
matrix.

3.5 Detailed Balance

In the typical Monte Carlo situation we know which probability density ρ we want to
sample, while the preceeding argument will generate a probability density according to a
given stochastic matrix. The key question is how to construct a matrix P

=
which has an

eigenvector corresponding to the desired probability density ρ.
The eigenvector equation can be written out explicitly as

n∑

i

ρipij = ρj (47)

If we now impose detailed balance according to

ρipij = ρjpji (48)

we obtain the result
∑

i

ρipij =
∑

i

ρjpji = ρj

∑

i

pji = ρj (49)

This is exactly the condition required for an eigenvector of P with eigenvalue 1.
Detailed balance guarantees ρP

=
= ρ and is therefore a sufficient condition to con-

struct a matrix P
=

with the desired asymptotic distribution but it is not necessarily the only
possible way!

3.6 Decomposition of the Transition Process

We can arbitrarily decompose each pij into a factor describing the probability of proposing
a particular transition tij and a factor aij describing the probability of accepting this choice.

pij = tijaij (50)

This decomposition is valid if the two processes are successive and independent.
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Substitution into the detailed balance relationship yields
ρj

ρi
=

pij

pji
=

tijaij

tjiaji
(51)

Since we assume that ρ is a known probability density to be generated by the walk, and
since we can pick a transition strategy specifying tij according to our taste, it is useful to
convert this expression into a form which defines the required acceptance probability:

aij

aji
=

ρj

ρi

tji

tij
(52)

Note that the construction of the random walk requires only that we are able to compute
the ratio of probability densities. We can consequently work with densities ρ which are
not normalized!

3.7 Accepting Proposed Transitions

There are two conventional choices for the acceptance probabilities aij , aji which satisfy
this relation:

1. Metropolis (1953):

aij = min

[

1,
ρj

ρi

tji

tij

]

(53)

Proof by verification of the two possibilities:

(a) ρjtji ≥ ρitij ⇒ aij = 1

aji = ρi

ρj

tij

tji
aij

aji
=

ρj

ρi

tji

tij
q.e.d.

(b) ρjtji < ρitij ⇒ aij =
ρj

ρi

tji

tij

aji = 1
aij

aji
=

ρj

ρi

tji

tij
q.e.d.

2. Glauber

aij =
1

1 + ρi

ρj

tij

tji

(54)

Verification by substitution:

aij

aji
=

1 +
ρj

ρi

tji

tij

1 + ρi

ρj

tij

tji

(55)

aij

aji
=

(ρitij + ρjtji)ρjtji

(ρjtji + ρitij)ρitij
(56)

aij

aji
=

ρjtji

ρitij
q.e.d. (57)
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3.8 Random Walks in Continuous Spaces

The fundamental ideas of the construction of random walks via the stochastic matrix and a
detailed balance ansatz can be generalized to an infinite number of states.

a(x → x′) = min

[

1,
ρ(x′)t(x′ → x)

ρ(x)t(x → x′)

]

(58)

3.9 Coordinates of a Random Walk

The coordinates or ’states’ of random walks are defined very broadly and can be

• All discrete (e.g. spins on a lattice)

• All continuous (e.g. atomic coordinates in simulations of liquids)

• Any mixture of the two (e.g. particles with spin and continuous space coordinates)

Specifically also the particle number in physical simulations can be a (discrete) coor-
dinate (Grand canonical Monte Carlo).

3.10 The Transition Function t

A common simplification consists in the assumption

t(x′ → x) = t(x → x′) (59)

and specifically the choice t(x → x′) = t(|x − x′|).
The formula for the Metropolis acceptance probability is then simply

a(x → x′) = min

[

1,
ρ(x′)

ρ(x)

]

(60)

Examples:

• Proposing a new position x′ with uniform probability from a volume surrounding x
(e.g. a hypercube of predefined size in the majority of simple random walk methods).

• Picking a new position x′ according to a multidimensional Gaussian centered on x:

t(x → x′) ∝ exp

(

−|x − x′|2
2σ2

)

(61)

Explicit inclusion of t(x → x′) in the formulation allows guided random walks.
Guided random walks play a major role many smart sampling techniques like Force bias
Monte Carlo, J-walking, improved variational quantum Monte Carlo, and diffusion Monte
Carlo with importance sampling. The construction of the transition strategy is very often
closely tied to the nature of the problem and no general guiding rules can be given here.
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A good strategy tends to propose moves which strike a good compromise between large
displacement in the underlying coordinate space to minimize the serial correlations and a
good acceptance ratio. In diffusion quantum Monte Carlo the transition strategy is given
once a trial wave function has been chosen, but in many other cases there is considerable
space for human imagination, making this one of the key parts of Monte Carlo algorithms
where brain power can beat supercomputer power.

3.11 How to Accept a Proposed Change of State?

The translation of the algebraic relationship for the probability a of accepting a move into
a practical algorithm is in fact very simple. The cumulative distribution function F (x)
for The probability P{u ≤ x} that a random number u distributed in the interval [0, 1]
with a uniform probability density ρ(u) = 1 is less then or equal x (x ≤ 1) is given by
P{u ≤ x} =

∫ x

0
ρ(u)du =

∫ x

0
du = x. Consequently u ≤ a will be true with probability

a and we can accept the proposed move whenever a uniform random number u satisfies
u ≤ a. It is worthwhile to note here that the quality of the uniform random number
generator for u has to be very high.

3.12 Summary of Important Random Walk Features

Good features:

• Random sampling from distributions in spaces of high dimension.

• No need to be able to normalize the probability density function (which would involve
a multidimensional integration).

• Very general coordinate definition and very broad applicability.

Troublesome Features:

• The desired distribution is reached only asymptotically.
When is a random walk in its asymptotic regime?

• Serial correlation between sampling positions.
Requires careful autocorrelation analysis.

4 Monte Carlo Integration

4.1 The Principle of Monte Carlo Integration

We have seen that the expectation value of the sum of random variables g(xi) with xi

drawn according to the probability density ρ(x) is identical with the expectation value of
g(x) over the underlying distribution:

E(G) = E(g(x)) (62)
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G =
1

n

n∑

i

g(xi) , xi ∝ ρ(x) (63)

Now recall the original definition of the expectation value as an integral over the distri-
bution:

E(g(x)) =

∫

ρ(x)g(x)dx = lim
n→∞

1

n

n∑

i

g(xi) (64)

The following conclusions can be drawn from this formula:

• The statistical error for the integral is independent of the dimensionality of the inte-
gral.

• The statistical error diminishes proportional to 1/
√

n.

• The proportionality constant controlling the absolute size of the error bar depends on
the variance of g.

• The integrand need not even be smooth.

The most important observation is the first one, which indicates that Monte Carlo inte-
gration can be interesting for multidimensional integrals. While all true random sampling
techniques will lead to an error bar on the result which diminishes in proportion to n−

1

2

for n samples, there are in fact special methods based on socalled quasirandom numbers
which achieve a somewhat faster rate of statistical convergence for problems with a mod-
erate number of dimensions.

What we can influence by smart sampling techniques is the prefactor of n−
1

2 since it
depends on the variance of the function being sampled. If parts of the function can be
integrated analytically or factored out as a density accessible for direct sampling we may
end up with a residual function to be sampled by Monte Carlo which has a smaller variance
than the original one. These variance reduction techniques allow significant improvements
of the statistical errors but do not affect the n−

1

2 convergence rate.
The last point is also of certain interest in particular in comparison to highly accurate

grid based quadrature rules. The latter (e.g. Gaussian quadratures) are very powerful, but
require the existence of high order derivatives of the integrand. Functions with discontinu-
ities can be very troublesome to integrate unless one can subdivide the integration domain
according to the location of the discontinuities. Monte Carlo is very robust and works
for ’spiky’ integrands. So even for low dimensional cases where Monte Carlo is not the
most efficient method it may be an interesting way to produce a crude estimate due to its
simplicity.

We should point out, however, that Monte Carlo integration of oscillatory function is
notoriously difficult, as the computation of any integral which is small compared to the
variance of the integrand, unless we can devise a trick to absorb the oscillations.

4.2 Efficiency of Monte Carlo Integration

In order to get an idea about the efficiency of Monte Carlo integration and to derive a
criterion for the number of dimensions where Monte Carlo becomes interesting we make
the following assumptions
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• g(x) is a d-dimensional function.

• We have fixed resources which allow the evaluation of g(x) at a fixed number of
points n.

• We dispose of a grid based product integration rule with leading error hq in the grid
step h (e.g. Simpson q = 5).

• In a balanced treatment of all dimensions the grid step size will then be h ∝ n−1/d.

Efficiency analysis:

• The product rule quadrature will have overall accuracy

εGrid ∝ n−q/d (65)

• The Monte Carlo quadrature will have overall accuracy

εMC ∝ n−1/2 (66)

• Monte Carlo will be more efficient if d > 2q.
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